R/ConditionalSampleSize.R
    ConditionalSampleSize-class.RdThis score simply evaluates n(d, x1) for a design d and the
first-stage outcome x1.
The data distribution and prior are only relevant when it is integrated.
ConditionalSampleSize(label = "n(x1)")
ExpectedSampleSize(dist, prior, label = "E[n(x1)]")
ExpectedNumberOfEvents(dist, prior, label = "E[n(x1)]")
# S4 method for ConditionalSampleSize,TwoStageDesign
evaluate(s, design, x1, optimization = FALSE, ...)object label (string)
a univariate distribution object
a Prior object
Score object
object
stage-one test statistic
logical, if TRUE uses a relaxation to real
parameters of the underlying design; used for smooth optimization.
further optional arguments
design <- TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L)
prior  <- PointMassPrior(.4, 1)
css   <- ConditionalSampleSize()
evaluate(css, design, c(0, .5, 3))
#> [1] 100 100  50
ess   <- ExpectedSampleSize(Normal(), prior)
ene <- ExpectedNumberOfEvents(Survival(0.7),PointMassPrior(1.7,1))
# those two are equivalent
evaluate(ess, design)
#> [1] 73.86249
evaluate(expected(css, Normal(), prior), design)
#> [1] 73.86249