ANOVA() get_tau_ANOVA()
|
Analysis of Variance |
AverageN2() evaluate(<AverageN2>,<TwoStageDesign>)
|
Regularization via L1 norm |
Binomial() quantile(<Binomial>) simulate(<Binomial>,<numeric>)
|
Binomial data distribution |
ChiSquared() quantile(<ChiSquared>) simulate(<ChiSquared>,<numeric>)
|
Chi-Squared data distribution |
ConditionalPower() Power() evaluate(<ConditionalPower>,<TwoStageDesign>)
|
(Conditional) Power of a Design |
ConditionalSampleSize() ExpectedSampleSize() ExpectedNumberOfEvents() evaluate(<ConditionalSampleSize>,<TwoStageDesign>)
|
(Conditional) Sample Size of a Design |
evaluate(<Constraint>,<TwoStageDesign>) `<=`(<ConditionalScore>,<numeric>) `>=`(<ConditionalScore>,<numeric>) `<=`(<numeric>,<ConditionalScore>) `>=`(<numeric>,<ConditionalScore>) `<=`(<ConditionalScore>,<ConditionalScore>) `>=`(<ConditionalScore>,<ConditionalScore>) `<=`(<UnconditionalScore>,<numeric>) `>=`(<UnconditionalScore>,<numeric>) `<=`(<numeric>,<UnconditionalScore>) `>=`(<numeric>,<UnconditionalScore>) `<=`(<UnconditionalScore>,<UnconditionalScore>) `>=`(<UnconditionalScore>,<UnconditionalScore>)
|
Formulating Constraints |
ContinuousPrior()
|
Continuous univariate prior distributions |
DataDistribution-class DataDistribution
|
Data distributions |
GroupSequentialDesign() TwoStageDesign(<GroupSequentialDesign>) TwoStageDesign(<GroupSequentialDesignSurvival>)
|
Group-sequential two-stage designs |
GroupSequentialDesignSurvival-class
|
Group-sequential two-stage designs for time-to-event-endpoints |
MaximumSampleSize() evaluate(<MaximumSampleSize>,<TwoStageDesign>)
|
Maximum Sample Size of a Design |
N1() evaluate(<N1>,<TwoStageDesign>)
|
Regularize n1 |
NestedModels() quantile(<NestedModels>) simulate(<NestedModels>,<numeric>)
|
F-Distribution |
Normal() quantile(<Normal>) simulate(<Normal>,<numeric>)
|
Normal data distribution |
OneStageDesign() TwoStageDesign(<OneStageDesign>) TwoStageDesign(<OneStageDesignSurvival>) plot(<OneStageDesign>)
|
One-stage designs |
OneStageDesignSurvival-class
|
One-stage designs for time-to-event endpoints |
Pearson2xK() get_tau_Pearson2xK()
|
Pearson's chi-squared test for contingency tables |
PointMassPrior()
|
Univariate discrete point mass priors |
Prior-class Prior
|
Univariate prior on model parameter |
expected() evaluate()
|
Scores |
Student() quantile(<Student>) simulate(<Student>,<numeric>)
|
Student's t data distribution |
Survival() quantile(<Survival>) simulate(<Survival>,<numeric>)
|
Log-rank test |
SurvivalDesign() TwoStageDesign(<TwoStageDesign>) OneStageDesign(<OneStageDesign>) GroupSequentialDesign(<GroupSequentialDesign>)
|
SurvivalDesign |
TwoStageDesign() summary(<TwoStageDesign>)
|
Two-stage designs |
TwoStageDesignSurvival-class
|
Two-stage design for time-to-event-endpoints |
ZSquared() get_tau_ZSquared()
|
Distribution class of a squared normal distribution |
adoptr
|
Adaptive Optimal Two-Stage Designs |
get_lower_boundary_design() get_upper_boundary_design()
|
Boundary designs |
bounds()
|
Get support of a prior or data distribution |
composite() evaluate(<CompositeScore>,<TwoStageDesign>)
|
Score Composition |
condition()
|
Condition a prior on an interval |
c2()
|
Query critical values of a design |
cumulative_distribution_function()
|
Cumulative distribution function |
expectation expectation,ContinuousPrior,function-method expectation,PointMassPrior,function-method
|
Expected value of a function |
get_initial_design()
|
Initial design |
make_tunable() make_fixed()
|
Fix parameters during optimization |
minimize()
|
Find optimal two-stage design by constraint minimization |
n1() n2() n()
|
Query sample size of a design |
plot(<TwoStageDesign>)
|
Plot TwoStageDesign with optional set of conditional scores |
posterior()
|
Compute posterior distribution |
predictive_cdf()
|
Predictive CDF |
predictive_pdf()
|
Predictive PDF |
print()
|
Printing an optimization result |
probability_density_function()
|
Probability density function |
simulate(<TwoStageDesign>,<numeric>)
|
Draw samples from a two-stage design |
subject_to() evaluate(<ConstraintsCollection>,<TwoStageDesign>)
|
Create a collection of constraints |
tunable_parameters() update(<TwoStageDesign>) update(<OneStageDesign>)
|
Switch between numeric and S4 class representation of a design |