| 
           ANOVA() get_tau_ANOVA()  
         | 
        Analysis of Variance  | 
      
| 
           AverageN2() evaluate(<AverageN2>,<TwoStageDesign>)  
         | 
        Regularization via L1 norm  | 
      
| 
           Binomial() quantile(<Binomial>) simulate(<Binomial>,<numeric>)  
         | 
        Binomial data distribution  | 
      
| 
           ChiSquared() quantile(<ChiSquared>) simulate(<ChiSquared>,<numeric>)  
         | 
        Chi-Squared data distribution  | 
      
| 
           ConditionalPower() Power() evaluate(<ConditionalPower>,<TwoStageDesign>)  
         | 
        (Conditional) Power of a Design  | 
      
| 
           ConditionalSampleSize() ExpectedSampleSize() ExpectedNumberOfEvents() evaluate(<ConditionalSampleSize>,<TwoStageDesign>)  
         | 
        (Conditional) Sample Size of a Design  | 
      
| 
           evaluate(<Constraint>,<TwoStageDesign>) `<=`(<ConditionalScore>,<numeric>) `>=`(<ConditionalScore>,<numeric>) `<=`(<numeric>,<ConditionalScore>) `>=`(<numeric>,<ConditionalScore>) `<=`(<ConditionalScore>,<ConditionalScore>) `>=`(<ConditionalScore>,<ConditionalScore>) `<=`(<UnconditionalScore>,<numeric>) `>=`(<UnconditionalScore>,<numeric>) `<=`(<numeric>,<UnconditionalScore>) `>=`(<numeric>,<UnconditionalScore>) `<=`(<UnconditionalScore>,<UnconditionalScore>) `>=`(<UnconditionalScore>,<UnconditionalScore>)  
         | 
        Formulating Constraints  | 
      
| 
           ContinuousPrior()  
         | 
        Continuous univariate prior distributions  | 
      
| 
           DataDistribution-class DataDistribution  
         | 
        Data distributions  | 
      
| 
           GroupSequentialDesign() TwoStageDesign(<GroupSequentialDesign>) TwoStageDesign(<GroupSequentialDesignSurvival>)  
         | 
        Group-sequential two-stage designs  | 
      
| 
           GroupSequentialDesignSurvival-class  
         | 
        Group-sequential two-stage designs for time-to-event-endpoints  | 
      
| 
           MaximumSampleSize() evaluate(<MaximumSampleSize>,<TwoStageDesign>)  
         | 
        Maximum Sample Size of a Design  | 
      
| 
           N1() evaluate(<N1>,<TwoStageDesign>)  
         | 
        Regularize n1  | 
      
| 
           NestedModels() quantile(<NestedModels>) simulate(<NestedModels>,<numeric>)  
         | 
        F-Distribution  | 
      
| 
           Normal() quantile(<Normal>) simulate(<Normal>,<numeric>)  
         | 
        Normal data distribution  | 
      
| 
           OneStageDesign() TwoStageDesign(<OneStageDesign>) TwoStageDesign(<OneStageDesignSurvival>) plot(<OneStageDesign>)  
         | 
        One-stage designs  | 
      
| 
           OneStageDesignSurvival-class  
         | 
        One-stage designs for time-to-event endpoints  | 
      
| 
           Pearson2xK() get_tau_Pearson2xK()  
         | 
        Pearson's chi-squared test for contingency tables  | 
      
| 
           PointMassPrior()  
         | 
        Univariate discrete point mass priors  | 
      
| 
           Prior-class Prior  
         | 
        Univariate prior on model parameter  | 
      
| 
           expected() evaluate()  
         | 
        Scores  | 
      
| 
           Student() quantile(<Student>) simulate(<Student>,<numeric>)  
         | 
        Student's t data distribution  | 
      
| 
           Survival() quantile(<Survival>) simulate(<Survival>,<numeric>)  
         | 
        Log-rank test  | 
      
| 
           SurvivalDesign() TwoStageDesign(<TwoStageDesign>) OneStageDesign(<OneStageDesign>) GroupSequentialDesign(<GroupSequentialDesign>)  
         | 
        SurvivalDesign  | 
      
| 
           TwoStageDesign() summary(<TwoStageDesign>)  
         | 
        Two-stage designs  | 
      
| 
           TwoStageDesignSurvival-class  
         | 
        Two-stage design for time-to-event-endpoints  | 
      
| 
           ZSquared() get_tau_ZSquared()  
         | 
        Distribution class of a squared normal distribution  | 
      
| 
           adoptr  
         | 
        Adaptive Optimal Two-Stage Designs  | 
      
| 
           get_lower_boundary_design() get_upper_boundary_design()  
         | 
        Boundary designs  | 
      
| 
           bounds()  
         | 
        Get support of a prior or data distribution  | 
      
| 
           composite() evaluate(<CompositeScore>,<TwoStageDesign>)  
         | 
        Score Composition  | 
      
| 
           condition()  
         | 
        Condition a prior on an interval  | 
      
| 
           c2()  
         | 
        Query critical values of a design  | 
      
| 
           cumulative_distribution_function()  
         | 
        Cumulative distribution function  | 
      
| 
           expectation expectation,ContinuousPrior,function-method expectation,PointMassPrior,function-method  
         | 
        Expected value of a function  | 
      
| 
           get_initial_design()  
         | 
        Initial design  | 
      
| 
           make_tunable() make_fixed()  
         | 
        Fix parameters during optimization  | 
      
| 
           minimize()  
         | 
        Find optimal two-stage design by constraint minimization  | 
      
| 
           n1() n2() n()  
         | 
        Query sample size of a design  | 
      
| 
           plot(<TwoStageDesign>)  
         | 
        Plot TwoStageDesign with optional set of conditional scores  | 
      
| 
           posterior()  
         | 
        Compute posterior distribution  | 
      
| 
           predictive_cdf()  
         | 
        Predictive CDF  | 
      
| 
           predictive_pdf()  
         | 
        Predictive PDF  | 
      
| 
           print()  
         | 
        Printing an optimization result  | 
      
| 
           probability_density_function()  
         | 
        Probability density function  | 
      
| 
           simulate(<TwoStageDesign>,<numeric>)  
         | 
        Draw samples from a two-stage design  | 
      
| 
           subject_to() evaluate(<ConstraintsCollection>,<TwoStageDesign>)  
         | 
        Create a collection of constraints  | 
      
| 
           tunable_parameters() update(<TwoStageDesign>) update(<OneStageDesign>)  
         | 
        Switch between numeric and S4 class representation of a design  |