R/DataDistribution.R, R/BinomialDistribution.R, R/ChiSquaredDistribution.R, and 4 more
cumulative_distribution_function.Rdcumulative_distribution_function evaluates the cumulative distribution
function of a specific distribution dist at a point x.
cumulative_distribution_function(dist, x, n, theta, ...)
# S4 method for Binomial,numeric,numeric,numeric
cumulative_distribution_function(dist, x, n, theta, ...)
# S4 method for ChiSquared,numeric,numeric,numeric
cumulative_distribution_function(dist, x, n, theta, ...)
# S4 method for NestedModels,numeric,numeric,numeric
cumulative_distribution_function(dist, x, n, theta, ...)
# S4 method for Normal,numeric,numeric,numeric
cumulative_distribution_function(dist, x, n, theta, ...)
# S4 method for Student,numeric,numeric,numeric
cumulative_distribution_function(dist, x, n, theta, ...)
# S4 method for Survival,numeric,numeric,numeric
cumulative_distribution_function(dist, x, n, theta, ...)a univariate distribution object
outcome
sample size
distribution parameter
further optional arguments
If the distribution is Binomial,
theta denotes the rate difference between
intervention and control group.
Then, the mean is assumed to be
√ n theta.
If the distribution is Normal, then
the mean is assumed to be
√ n theta.
cumulative_distribution_function(Binomial(.1, TRUE), 1, 50, .3)
#> [1] 0.004310344
cumulative_distribution_function(Pearson2xK(3), 1, 30, get_tau_Pearson2xK(c(0.3,0.4,0.7,0.2)))
#> [1] 0.001966853
cumulative_distribution_function(ZSquared(4), 1, 35, get_tau_ZSquared(0.4))
#> [1] 0.456974
cumulative_distribution_function(ANOVA(3), 1, 30, get_tau_ANOVA(c(0.3, 0.4, 0.7, 0.2)))
#> [1] 0.2402678
cumulative_distribution_function(Normal(), 1, 50, .3)
#> [1] 0.3085375
cumulative_distribution_function(Student(two_armed = FALSE), .75, 50, .9)
#> [1] 1.062003e-08
cumulative_distribution_function(Survival(0.6,TRUE),0.75,50,0.9)
#> [1] 0.899164