R/DataDistribution.R, R/BinomialDistribution.R, R/ChiSquaredDistribution.R, and 4 more
    probability_density_function.Rdprobability_density_function evaluates the probability density
function of a specific distribution dist at a point x.
probability_density_function(dist, x, n, theta, ...)
# S4 method for Binomial,numeric,numeric,numeric
probability_density_function(dist, x, n, theta, ...)
# S4 method for ChiSquared,numeric,numeric,numeric
probability_density_function(dist, x, n, theta, ...)
# S4 method for NestedModels,numeric,numeric,numeric
probability_density_function(dist, x, n, theta, ...)
# S4 method for Normal,numeric,numeric,numeric
probability_density_function(dist, x, n, theta, ...)
# S4 method for Student,numeric,numeric,numeric
probability_density_function(dist, x, n, theta, ...)
# S4 method for Survival,numeric,numeric,numeric
probability_density_function(dist, x, n, theta, ...)a univariate distribution object
outcome
sample size
distribution parameter
further optional arguments
If the distribution is Binomial,
  theta denotes the rate difference between
  intervention and control group.
  Then, the mean is assumed to be
  √ n  theta.
If the distribution is Normal, then
  the mean is assumed to be
  √ n  theta.
probability_density_function(Binomial(.2, FALSE), 1, 50, .3)
#> [1] 0.0008519612
probability_density_function(Pearson2xK(3), 1, 30, get_tau_Pearson2xK(c(0.3, 0.4, 0.7, 0.2)))
#> [1] 0.003505548
probability_density_function(ZSquared(4), 1, 35, get_tau_ZSquared(0.4))
#> [1] 0.223116
probability_density_function(ANOVA(3), 1, 30, get_tau_ANOVA(c(0.3, 0.4, 0.7, 0.2)))
#> [1] 0.2513264
probability_density_function(Normal(), 1, 50, .3)
#> [1] 0.3520653
probability_density_function(Student(TRUE), 1, 40, 1.1)
#> [1] 0.0001946335
probability_density_function(Survival(0.6,TRUE),0.75,50,0.9)
#> [1] 0.1765677